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Abstract

The paper contributes a general dynamical formulation and numerical solution procedure for studying nonlinear

and three-dimensional dynamics of Kirchhoff rods. Target applications include the dynamic formation of DNA loops

and supercoils as well as loops (hockles) in marine cables. The formulation accommodates non-homogeneous and non-

isotropic inextensible rods both with and without coupling of tension and torsion. The utility of this formulation is illus-

trated by studying the dynamics and quasi-static response of a clamped–clamped rod subject to compression and/or

twist. For slow loading rates, the computed quasi-static responses converge to published equilibrium solutions for a

benchmark problem. As loading rates increase, new behaviors are observed including hysteresis in the neighborhood

of equilibrium bifurcations. The addition of chirality in the form of tension–torsion coupling has a pronounced influ-

ence on the computed looped geometries. This finding has implications for DNA loops formed by DNA–protein bind-

ing as well as loop formation in helically wound wire and synthetic cables.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Marine cables under torsion and low tension may form loops and tangles as shown in Fig. 1. In this con-

text, the loops are sometimes referred to as ‘‘hockles’’ and these can lead to mechanical damage or to signal

attenuation in fiber optic cables [1]. The resulting large deformations are dominated by bending and torsion
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Fig. 1. Low tension cable forming loops and tangles on the sea floor.
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as captured in elastic rod theories; refer, for example, to [1–4]. Loop formation in elastic rods is often ini-

tiated by instabilities under compression and/or torsion.

Rod theories are commonly used to understand the mechanics of long structural elements such as marine

and satellite tethers and cables. At small length scales, the same rod theories have been employed to model

biological filaments and single molecules including cilia, flagella, and DNA; see for example [5–7]. Despite

enormous differences in these length scales and applications, some striking similarities exist. For instance,

interwound DNA supercoils are topologically equivalent to the hockles that may form in marine cables [8].

In addition, the helical construction of synthetic and wire rope cables produces a chiral structure that
resembles that of the DNA duplex. Averaged over many helical turns, the bending and torsional stiffness

of cables and DNA influence their response to applied forces which, in turn, may greatly impact their func-

tion/performance. For instance, the structural behavior of DNA influences its functional behavior includ-

ing gene expression [9–12]. The structural response of DNA, and the formation of loops and supercoils,

requires multi-physical modeling that may include, for example, structural stiffness, hydrodynamics, elec-

trostatics, and thermal kinetics [6,13].

Classical Kirchhoff/Clebsch rod theory employs a linear elastic constitutive law for bending and tor-

sion, and large deformations produce geometric nonlinearities in the resulting equilibrium equations
[14–17]. Numerous studies have employed this nonlinear static rod theory to compute looped geome-

tries representing three-dimensional equilibrium states; see for example [2,3,18,19]. Recent studies have

also accounted for self-contact in looped equilibrium states [20,21]. It is well known that both planar

and non-planar equilibrium states may become unstable under specific bifurcation conditions; consider,

for instance, the loop formation instabilities noted in [2,21] and the opposite ‘‘pop-out’’ instabilities

noted in [3,21]. These instabilities initiate large dynamic responses which may also produce nonlinear

transitions to more energetically favorable equilibria. Few studies, however, have investigated nonlinear

dynamic responses.
The model in [5] is used to study quasi-static response with self-contact, while that in [22,23] captures

highly dynamic responses damped by hydrodynamic forces but without self-contact. The latter model is

extended in [8] for non-homogeneous and anisotropic rods and again in [24] for dynamic self-contact.

The dynamic evolution of a hockle (or equivalently an interwound DNA supercoil) with self-contact is sim-

ulated in [24]. Anisotropy in the equilibrium rod models for DNA has been evaluated in [25,26].

The first objective of the present study is to benchmark results from the dynamic rod model [8] with

the predicted equilibrium states and bifurcation conditions recently presented in [21]. This benchmark
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problem considers clamped rods subject to twist and compression. Two further objectives are to under-

stand the influence of (1) nonlinear rod dynamics, and (2) the coupling of tension and torsion in chiral

rods.

We open in Section 2 by presenting the dynamical rod theory as a 12th-order initial-boundary value

problem. An efficient finite difference solution method is then reviewed in Section 3 that employs the gen-
eralized-a method [27–29] in both space and time. Nonlinear kinematics of rod rotation are formulated

using incremental rotations [30] as opposed to previous Euler parameter formulations [31]. The benchmark

problem is evaluated in Section 4 and comparisons are drawn between the dynamical solutions captured

herein with the equilibrium solutions of [21]. The dynamical solutions converge to the equilibrium solutions

under quasi-static loading. They also exhibit a variety of nonlinear dynamic transitions between equilibria

and hysteresis as the loading rates increase. Examples of hysteresis are included in Section 5. In Section 6,

we study the influence of chirality by adding tension–torsion coupling to the rod constitutive law. This cou-

pling is motivated by the helically wound construction of common wire and synthetic cables as well as the
DNA duplex. The impact of this coupling is highlighted through new solutions to the benchmark problem.

We close with conclusions in Section 7.
2. Dynamical rod model

2.1. Definitions and assumptions

Consider the infinitesimal element of a Kirchhoff rod [14] with the deformation field determined by the

centerline curvature and cross-section twist. The body-fixed frame {ai} at each cross-section is employed to

describe the orientation of the cross-section with respect to the inertial frame {ei}. The three-dimensional

curve formed by the centerline is parameterized by the arc length coordinate s and time t. The deformation

field is represented by the curvature and twist vector j(s, t) that is defined as the rotation per unit arc length

of the body-fixed frame. In a stress-free state, the rod conforms to its natural geometry (with possible intrin-

sic curvature and twist) defined by j0(s).
The internal stress resultants generate tension (or compression), shear, and bending and torsional mo-

ments on the cross-section. The resultant internal force and internal moment vectors are denoted by

f(s, t) and q(s, t), respectively. The Kirchhoff rod is unshearable and inextensible, and employs a linear elas-

tic constitutive law relating the internal moments to the curvature and twist
qðs; tÞ ¼ BðsÞðjðs; tÞ � j0ðsÞÞ; ð1Þ

where B(s) is a (positive definite) stiffness tensor. The resulting strain energy per unit arc length becomes
Seðs; tÞ ¼
1

2
ðjðs; tÞ � j0ðsÞÞTBðsÞðjðs; tÞ � j0ðsÞÞ. ð2Þ
The kinetic energy of the rod depends upon the centerline velocity m(s, t) and the cross-section angular

velocity x(s, t). Let m(s) denote the mass of the rod per unit arc length and I(s) denote the tensor of prin-

cipal mass moments of inertia per unit arc length. Then the kinetic energy per unit arc length is
Keðs; tÞ ¼
1

2
xðs; tÞTIðsÞxðs; tÞ þ 1

2
mðs; tÞTmðsÞmðs; tÞ. ð3Þ
The vectors m(s, t), x(s, t), j(s, t), and f(s, t) define four field variables. Depending upon the application, the

rod may also interact with numerous external field forces including those produced by gravity, a surround-

ing fluid medium, contact with other bodies or with the rod itself, electrostatic forces, Langevin (thermal)

forces, etc. An overview of example hydrodynamic and thermal forces is provided in Appendix 1. The
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resultant of these external forces and moments per unit length is denoted by F(s, t, . . .) and Q(s, t, . . .),
respectively, and these may also depend upon the kinematical quantities j(s, t), x(s, t), and m(s, t).

Unless stated otherwise, the vector quantities will be represented using components in the body fixed

frame {ai}. Recall that partial derivatives of any vector m with respect to the body fixed frame are related

to the partial derivatives with respect to the inertial frame through
om
ot

� �
faig

¼ om
ot

� �
feig

� x� m and
om
os

� �
faig

¼ om
os

� �
feig

� j� m; ð4Þ
where the subscript specifies the reference frame. For notational convenience, we drop the subscript for the

body fixed frame from this point forward.

The body fixed frame {ai} is chosen to coincide with the �principal torsion-flexure axes� of the cross-sec-
tion [16]. In particular, a1 and a2 are in the plane of the cross-section and are aligned with the principal

flexure axes while a3 is normal to the cross-section (directed towards increasing arc length) and coincides

with the torsion axis. Expressed in this reference frame, the tensors B(s) and I(s) are diagonal. For example,

B(s) reduces to
BðsÞ ¼
A1ðsÞ 0 0

0 A2ðsÞ 0

0 0 CðsÞ

2
64

3
75; ð5Þ
where A1(s) and A2(s) are bending rigidities (possibly non-homogeneous and/or non-anisotropic), and C(s)

is the torsional rigidity.

2.2. Equations of motion

The balance of linear momentum of the infinitesimal element shown in Fig. 2 becomes
of
os

þ j� f ¼ m
om
ot

þ x� m

� �
� F ð6Þ
and the balance of angular momentum becomes
oq
os

þ j� q ¼ I
ox
ot

þ x� Ixþ f � a3 � Q. ð7Þ
Recall that the internal moment q is related to the curvature and twist j through the constitutive law (1).
Fig. 2. Free body diagram of an infinitesimal element of a Kirchhoff rod.
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2.3. Constraints and summary

The above formulation is completed with the addition of two constraints. The first enforces an inexten-

sibility constraint which takes the form
ov
os

þ j� m ¼ x� a3. ð8Þ
The second follows from continuity requirements for x and j in the form of the compatibility constraint
ox
os

þ j� x ¼ oj
ot

. ð9Þ
Derivations of these constraints are provided in Appendix 2.

The four vector equations (6)–(9) in the four vector unknowns {m,x,j, f} are compactly written as
MðY ; s; tÞ oY
ot

þ KðY ; s; tÞ oY
os

þ FðY ; s; tÞ ¼ 0; ð10Þ
where Y(s, t) = {m,x,j, f}. The matrices M, K and F are defined in Appendix 3.
3. Numerical algorithm

Eq. (10) is 12th-order in space and requires six boundary conditions at the two boundary points. The

generalized-a method [27–29] is employed for integration in both space and time, leading to a second-order

accurate implicit finite differencing algorithm. The method is unconditionally stable and has the advantage

of controllable numerical dissipation. Starting with the initial value Y(s, 0), the discretized equations are

integrated over space at each successive time step. The boundary conditions are satisfied during spatial inte-

gration using classical shooting for boundary-value problems [23].
The boundary conditions and distributed forces/moments are often most readily decomposed into com-

ponents in the inertial frame. During integration, these components must be transformed to those in the

body fixed frame through a transformation matrix L(s, t). Standard formulations employ three Euler angles

or four Euler parameters to construct the nine components of L(s, t). Here, we employ incremental rota-

tions [30]. Accordingly, we compute the small change in L(s, t) across the time step Dt using the small incre-

mental rotation U(s, t, t � Dt)
Lðs; tÞ ¼ Uðs; t; t � DtÞLðs; t � DtÞ. ð11Þ
This rotation can be accomplished through a single rotation about one axis by invoking the Euler rotation

theorem [31]. Let the vector h(s, t) represent the infinitesimal rotation vector for U(s, t, t � Dt). Then
xðs; tÞ ¼ lim
Dt!0

hðs; tÞ
Dt

and U ¼ expð�~hÞ; ð12Þ
where ~h is the skew-symmetric form of h defined in Appendix 4. In short, we use (12) to compute h(s, t) and
U(s, t) and then use (11) to update L(s, t). From the transformation matrix L(s, t) and the centerline velocity

m(s, t), we then compute the position and orientation of each cross-section of the rod at any time by sub-

sequent integration.



376 S. Goyal et al. / Journal of Computational Physics 209 (2005) 371–389
4. Benchmarking study

We begin by comparing results from the dynamic model above with published equilibrium solutions that

serve as benchmarks. One benchmark study [21] catalogs the equilibria and bifurcations of homogeneous

isotropic rods (A1(s) = A2(s) = A) subject to specified end twist and end separation as illustrated in Fig. 3.
These equilibrium solutions are recovered as quasi-static solutions in our formulation for slow loading

rates. In [21], the rod is further assumed to have no distributed forces or moments and no intrinsic curva-

ture or twist. The bending to torsional stiffness ratio is chosen as A/C = 1.4. We include drag [23] as the

means to incorporate dissipation and also as a means to introduce a small random disturbance through

a small random superimposed flow.

4.1. Initial and boundary conditions

The rod of Fig. 3 has a specified number of complete twists R when straight. This number of twists is also

referred to as the ‘‘end rotation’’ in [21]. This equilibrium configuration is chosen as the initial condition for

all subsequent simulations. Both ends are then clamped. One clamp is then moved towards the other

through a distance d(t) normalized by the rod arc length Lc. The quantity d is referred to as the ‘‘end short-

ening’’ in [21], and it increases from d = 0 for the initially straight rod, through d = 1 when the two ends

meet, to the limit d ! 2 when the two ends cross and the rod is pulled straight (with infinite curvature

at the boundaries). In the absence of self-contact, the clamped ends may pass by each other during this pro-

cess. A formulation that incorporates dynamic self-contact is the subject of [24].
At slow (quasi-static) loading rates, _d ! 0 and our solutions converge to steady-state solutions. Table 1

lists the loading rate along with the other parameters that were used to obtain the following results. We

compute the end tension (referred to as the ‘‘rig force’’ in [21]) using
P ðtÞ ¼ f3ð0; tÞL2
c

4p2A
ð13Þ
which is normalized by the fundamental Euler buckling load. As the ends slowly approach, the rod initially
buckles in its fundamental buckling mode as expected. The end tension and torque required to initiate

buckling (of a twisted clamped rod) is derived in [32] as the buckling condition
cos p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � 4P

p� �
� cosðpT Þ ¼

2pP sin p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � 4P

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � 4P

p . ð14Þ
Here, T is the (normalized) end torque that is referred to as the ‘‘rig moment’’ in [21]
Fig. 3. Benchmark problem: a twisted and clamped rod. The ends have prescribed twist and separation.



Table 1

Rod and simulation parameters

Quantity Units (SI) Value

Rod diameter D m 1.0 · 10�3

Rod length Lc m 1.0 · 100

Bending stiffness A N m2 1.4p
64

� 10�3

Torsional stiffness C N m2 p
64
� 10�3

Bending moments of inertia per unit length I1 and I2 kg m p
64
� 10�9

Torsional moment of inertia per unit length I3 kg m p
32
� 10�9

Fluid density qf kg/m3 1.0 · 100

Normal drag coefficient Cn – 1.0 · 10�1

Tangential drag coefficient Ct – 1.0 · 10�2

Quasi-static loading rate j _dj (Section 4) m/s 5.0 · 10�3

Non-equilibrium loading rate j _dj (Section 5) m/s 5.0 · 10�2

Temporal step Dt s 1.0 · 10�1

Spatial step Ds m 1.0 · 10�2

Fig. 4.
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T ðtÞ ¼ q3ð0; tÞLc

2pA
. ð15Þ
4.2. Case 1: R ¼ 0, planar buckling at quasi-static rates ( _d ! 0)

We begin with the simplest case of a straight rod with no initial twist ðR ¼ 0Þ and evaluate its response to

quasi-static compression as the end shortening increases at a very slow rate ð _d ! 0Þ. To initiate and to
maintain buckling in one plane, we add a very small random fluid flow in the plane which loads the rod

through hydrodynamic drag as detailed in Appendix 5. The computed end tension is plotted in Fig. 4(a)

as a function of the end shortening d for the dynamic formulation presented herein (blue curve). This dy-

namic solution converges to the equilibrium solutions reported in [21] (red curves) for this quasi-static load-

ing rate ð _d ! 0Þ. The curves labeled 1 and 2 designate equilibrium solutions for the first and second

buckling modes, respectively. Starting at d = 0, the dynamic solution follows the equilibrium solution for
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Planar buckling at quasi-static rates ðR ¼ 0; _d ! 0Þ. The end tension (a) P and the strain energy (b) U are plotted as functions

end shortening d. The (red) curves labeled 1 and 2 replicate solutions from [21] for the first and second buckling modes,

ively. The (blue) curve represents the (quasi-static) solution from the dynamic model. (For interpretation of the references to

n this figure legend, the reader is referred to the web version of this article.)
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the fundamental mode and at d = 1 undergoes a large dynamic transition to the solution for the second

mode. This transition results as the second mode becomes more energetically favorable (lower strain en-

ergy) for d > 1.

This fact is illustrated in Fig. 4(b) where the strain energy is plotted as a function of end shortening. For

these planar equilibria, the strain energy develops solely from bending (no torsion) as computed from the
strain energy density (2):
Fig. 5.

config
UðtÞ ¼ Lc

4p2A

Z Lc

0

Seðs; tÞ ds. ð16Þ
The strain energy for the equilibrium solutions (red curves) is computed from the work done at the bound-

ary using the known end tension [21] and by noting
P ¼ � oU
od

. ð17Þ
The dynamic solution tracks the strain energy for the fundamental buckling mode for d < 1 and then for the

second buckling mode for d > 1. During this transition, the rod forms the sequence of figure eight config-
urations shown in Fig. 5 as computed by the dynamic formulation herein. This transition converges to that

reported in [33] for the quasi-static loading considered in this example. Note that the clamped ends start at

the apex of figure eight (snapshot 2) and ultimately transition to the intersection of figure eight (snapshot 4).

The same transition is reproduced upon decreasing d and without the hysteresis observed at faster loading

rates as discussed in Section 5.

4.3. Case 2: R ¼ 0, Spatial buckling at quasi-static rates ( _d ! 0)

We now re-evaluate the above example upon the addition of a small three-dimensional random distur-

bance that initiates an out-of-plane instability; refer to Appendix 5. In particular, the planar equilibria now

become unstable beyond a critical end shortening and bifurcate into stable spatial (three-dimensional) equi-

libria [21]. The end tension computed in [21] is recovered for the quasi-static loading rates in this example as

reported in Fig. 6(a) (red curve). The rod now buckles out of plane (follow blue curve) well before reaching

a figure eight configuration. This bifurcation is denoted by the triangle in Fig. 6 which locates where the

fundamental in plane mode loses stability and a stable spatial buckling mode is born. In addition, the

rod deforms into a circular loop with one complete twist at d = 1 as bending strain energy (red curve) is
exchanged for torsional strain energy (green curve) in Fig. 6(b). In fact, there is a marked decrease in bend-

ing energy accompanied by a large increase in torsional energy just beyond the bifurcation point which ini-

tiates the out of plane deformation.

4.4. Case 3: jRj ¼ 1 Planar and spatial buckling at quasi-static rates ( _d ! 0)

The calculations above are now repeated after first pre-twisting the rod by introducing one complete end

rotation when the rod is straight, i.e., jRj ¼ 1. The end tension for both planar and spatial equilibria [21] is
Dynamic transition from first buckling mode (snapshot 1) to second buckling mode (snapshot 5) through a series of figure eight

urations. The non-equilibrium shapes (snapshots 2–4) correspond to the dynamic transition path in Fig. 4(a).
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recovered for the quasi-static loading rate used in this example; refer to Fig. 7(a). Starting from d = 0, the

rod first buckles as per (14) in its fundamental mode which resembles a helix with small helical diameter

[32]. The helical diameter increases with d and the spatial equilibrium ultimately becomes planar with an

interior loop at the bifurcation point (denoted by the triangle). At this bifurcation, the out of plane solution

branch denoted by O joins the fundamental in plane solution branch denoted by 1. As d is increased fur-

ther, the now planar loop increases in diameter, and at d = 1, the rod conforms to a circular loop (without

twist). This loop becomes flattened for d > 1 and remains planar as it approaches the limit d ! 2 at which

point the rod is again straight with infinite curvature at its extremities. If the process is reversed (i.e., d is
now slowly decreased from 2), the planar loop becomes unstable at the bifurcation and exhibits a ‘‘pop out’’
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Fig. 7. Effect of initial twist on the spatial and planar buckling at quasi-static rates ðR ¼ 1; _d ! 0Þ. The end tension (a) P and the

strain energy (b) U are plotted as functions of the end shortening d. The curves labeled 1 and O replicate equilibrium solutions from [21]

and the solid (dashed) curve represents stable (unstable) equilibria. The bifurcation point is denoted by the triangle. The strain energy

U (blue) is the sum of torsional (green) and bending (red) strain energies. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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instability [3] when subjected to minute three-dimensional excitation. Fig. 7(b) shows that the strain energy

(and its decomposition into torsional and bending components) for the solutions of Fig. 7(a). Starting with

the straight and twisted rod (d = 0), the strain energy develops purely from torsion. Upon buckling, the tor-

sional strain energy is reduced while the bending strain energy is increased and a net increase in strain en-

ergy results as the spatial equilibria evolve (d increases). At the bifurcation point, the strain energy of the
spatial equilibrium achieves that of the planar equilibrium and beyond that point only the planar solution

exists.

It should also be noted in Fig. 7(b) that the circular loop (d = 1) achieves the minimum strain energy

beyond the bifurcation point. This coincides with the fact all circular loops with twist less than a critical

value ðjRj <
ffiffiffi
3

p
A
CÞ are stable [4,21,34,35]. Above this critical value, the circular loop buckles into a figure

eight (with subsequent intertwining) [5].
5. Effect of non-equilibrium loading (finite _d)

The results above confirm that the dynamic solutions converge to known equilibrium solutions at infin-

itesimal loading rates _d ! 0. The dynamic formulation reproduces the expected equilibrium bifurcations

and dynamic transitions between equilibria are also captured. We now turn attention to cases where the

loading rate is finite which introduces new dynamic effects, most notably hysteresis. In particular, as the

loading rate increases, the dynamic transition from planar to spatial equilibrium forms is delayed due to

inertial effects.
Figs. 8(a) and (b) illustrate this phenomenon for cases of an initially untwisted rod ðR ¼ 0Þ and a rod

with one complete initial twist ðjRj ¼ 1Þ, respectively. The loading rate j _dj ¼ 5� 10�2 m=s is sufficiently

large to observe hysteresis in these examples. The remaining parameters used in this example are again

listed in Table 1. As above, we include minute random excitation produced by a random flow field as de-

scribed in Appendix 5.

For the initially untwisted rod, the dynamic solution closely tracks the planar equilibrium solutions as

the end shortening initially increases ð _d > 0Þ starting from d = 0; refer to black curve in Fig. 8(a). However,

near the equilibrium bifurcation point (triangle), the dynamic solutions experience a delayed jump (‘‘pop
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Fig. 8. Dynamic effects of non-equilibrium loading rates ( _d finite). The end tension P plotted as function of end shortening d for cases

of rod (a) without initial twist R ¼ 0, and (b) with one complete initial twist R ¼ 1. The curves labeled 1 and O replicate planar and

spatial equilibrium solutions from [21]. The equilibrium bifurcation point is denoted by the triangle and the delayed transition by the

asterisk. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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out’’ instability) from the planar forms to the spatial forms as indicated by the asterisk. By contrast, when

the loading rate is reversed ð _d < 0Þ, the dynamic solutions pass through the equilibrium bifurcation as the

spatial forms transition smoothly to the planar forms; refer to light gray (or red) curve.

Fig. 8(b) shows analogous results for the case of the pre-twisted rod previously evaluated in Fig. 7. As

the end shortening increases ð _d > 0Þ, the dynamic solution closely follows the spatial form and smoothly
transitions to the planar form by passing through the equilibrium bifurcation (triangle); refer to black

curve. Upon reversing the loading rate ð _d < 0Þ, the dynamic solution experiences a significant delayed jump

(‘‘pop out’’ instability) from the planar to the spatial forms as indicated by the asterisk; refer to light gray

(or red) curve. Increasing the loading rate increases the delay while increasing the random excitation de-

creases the delay, as expected.
6. Effect of tension–torsion coupling

The benchmark equilibrium problem and the dynamic extensions above employ the constitutive model

(1) that also assumes no coupling of torsion and tension. Thus, under pure compression, the rod initially

buckles into a planar form and no torsional strain energy develops. By contrast, the initial buckling of rod-

like elements may be decidedly three-dimensional due to inherent chirality [36]; consider, for instance, the

helically wound structure of wire or synthetic cable [37] or the helical duplex of DNA [38]. In such systems,

any tension/compression immediately induces torsion. For marine cable applications, this motivates the

need to design so-called ‘‘torque-balanced’’ cables by using constructions that incorporate both left-handed
and right-handed helical winds. For DNA, this coupling affects the geometry and energetics of protein-

mediated DNA loops that are a known regulatory mechanism for gene expression [39–41]. We now add

tension–torsion coupling to the rod model above and study its influence on the dynamics of a clamped–

clamped rod.

Following [37], we begin with a homogenized linear constitutive law for coupled torsion and extension
f3 ¼ C1eþ C2j3; q3 ¼ C3eþ C4j3. ð18Þ

In the context of the wire rope considered in [37], e denotes the overall extensional strain of the rope (not

the individual component wires) and the constants Ci are determined by the stiffness of the component

wires and the helical construction. The simple model above captures the observed fact that the component

wires tend to unwind as the rope is stretched. Eliminating e leads to the (linear) tension–torque relation
q3 ¼ Cðj3 � C5f3Þ; ð19Þ

where C and C5 again depend upon the helical construction and wire stiffness. The coupling factor C5 is
non-dimensionalized and renamed kc using
C5f3Lc

2p

� �
¼ kc

f3L2
c

4p2A

� �
ð20Þ
for homogeneous and hemitropic rods [36]. We note that the sign of kc distinguishes a right-handed (kc < 0)

helical construction from a left-handed (kc > 0) helical construction. The clamped rod under pure compres-

sion ðR ¼ 0Þ will now immediately develop a reaction end torque T ¼ �kcCAP . Using this result in the buck-

ling condition (14) yields the critical end tension required to initiate buckling for a chiral rod
cos p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kc
C
A
P

� �2

� 4P

s0
@

1
A� cos pkc

C
A
P

� �
¼

2pP sin p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kc C

A P
� �2 � 4P

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kc C

A P
� �2 � 4P

q . ð21Þ
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Fig. 9 shows how this critical end tension depends upon the coupling factor kc for the first three buckling

modes. Clearly, this coupling factor has a strong influence on this bifurcation condition.

Even seemingly weak coupling has a marked influence on the shape of the rod after buckling. This sen-

sitivity is of keen interest in DNA mechanics where long-length scale looping can regulate gene expression

[39–41]. The orientation, twist distribution, and curvature distribution along the loop affect the availability
of DNA binding sites to transcriptional proteins [25,42]. The overall loop strain energy contributes to the

free energy of the DNA/protein complex and thus influences the probability of loop formation. Motivated

by these issues, we will now explore how loop properties are influenced by the coupling factor kc for the

simplest case of R ¼ 0.

Fig. 10(a) shows snapshots of the loops formed both with and without tension–torque coupling for one

value of end shortening d = 0.5 which corresponds to a state slightly before the bifurcation noted in Fig. 6

(triangle). As the coupling factor is increased, the loop rotates significantly out of plane. To quantify this

out of plane rotation, we introduce the angle / between the centerline tangent a3 at the tip of the loop and
the axis formed by the two ends (coincident with a3(0,t)). We define the tip of the loop as the point farthest

from the axis formed by the two ends as measured by the distance |a3(0,t) · (R(s, t) � R(0,t))|. At equilib-

rium, the loop will exhibit symmetry such that the tip is at the mid-span. In general, we compute the

out of plane rotation at the tip using
Fig. 9.

compu
/ ¼ cos�1 a3ð0; tÞ � a3ðStip; tÞ
� �

. ð22Þ
Fig. 10(b) shows the variation of / as a function of end shortening d for three values of the coupling factor
kc. For cases kc 6¼ 0, the out of plane rotation is initiated immediately and increases rapidly with increasing

end shortening, thus underscoring the sensitivity to tension–torsion coupling.

Fig. 11 shows the spatial variation of the (normalized) torsional moment q3, tension f3, twist j3, and
principal curvature |j0 · a3| for the rods with and without tension–torsion coupling. In this example, the

end shortening d = 0.5 for the two cases kc = 0 and kc = 0.1. The computed results for the torsional moment

q3 confirm that this quantity remains constant (a first integral) under equilibrium conditions and this con-

stant is also non-zero when tension–torsion coupling exists. This small degree of tension–torsion coupling

has only a minor influence on the computed tension f3 and the principal curvature |j0 · a3|, yet a pro-
The critical end tension P that initiates buckling as a function of the coupling factor kc. Values for the first three modes are

ted per (21) with R ¼ 0.



Fig. 10. (a) Sensitivity of equilibrium loop orientations to tension–torsion coupling kc. End shortening d = 0.5 and initial twist R ¼ 0.

(b) The angle /, which measures the out of plane orientation of the loop, is plotted as a function of end shortening d for three values of

the coupling factor kc.
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End shorting d = 0.5 and twist R = 0.
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nounced influence on the computed twist j3. The large influence on twist is responsible for the large sen-
sitivity of loop geometry on tension–torsion coupling as observed above.
7. Conclusions

The paper contributes a general dynamical formulation and numerical solution procedure for studying

nonlinear and three-dimensional dynamics of Kirchhoff rods. The model accommodates non-homogeneous
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and non-isotropic inextensible rods both with and without coupling of tension and torsion due to chirality.

Added drag allows simulation either with or without physical dissipation, while the use of the generalized-a
method accommodates (controlled) numerical dissipation. The utility of this formulation is demonstrated

by studying the dynamics and quasi-static response of a clamped–clamped rod subject to compression and/

or twist.
The quasi-static response is used to benchmark the dynamical formulation with known equilibrium

solutions. In particular, the equilibria and bifurcations studied in [21] are replicated over a wide range

of quasi-static loading conditions leading to both planar and spatial loops. The inclusion of dynamics

makes it possible to study nonlinear transitions between equilibria and to capture the effects of hysteresis.

Such transitions may help explain how small thermal fluctuations in DNA can initiate large changes in

supercoiled states [40]. The benchmark problem is further extended to accommodate chirality in the form

of tension–torsion coupling as found in helically wound wire and synthetic cables and the DNA duplex.

Results indicate that, in general, non-planar equilibria form immediately with any end shortening and that
the ultimate shape of the loop is a strong function of the tension–torsion coupling. This finding suggests

that loop formation (hockling) in wire and synthetic cables will be sensitive to cable construction. In addi-

tion, this finding has implications for the possible shapes of protein-mediated DNA loops that are a known

regulatory mechanism for gene expression.
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Appendix 1. Example hydrodynamic and thermal forces

The computational rod model herein incorporates a general body force that may represent a wide range

of possible interactions. The interactions appropriate for marine cables are, of course, quite distinct from

those governing the mechanics of DNA strands. In particular, the hydrodynamic and thermal forces are

significantly different for these two applications and example (not exhaustive) formulations of each are in-

cluded in this appendix to indicate some major differences.

A.1. Hydrodynamics of marine cables

The hydrodynamics of underwater cables is dominated by fluid inertia (high Reynolds number) and is

effectively modeled with standard Morison drag and added mass effects [43] for a cylindrical rod in the

far-field flow mf:
F drag ¼
1

2
qfDfCnjmr � a3ja3 � ðmr � a3Þ þ pCtðmr � a3Þjmr � a3ja3g; ð23Þ

F added mass ¼ �ma

om
ot

þ x� m

� 	
. ð24Þ
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Here, mr = mf � m is the flow relative to the rod, qf is the fluid density, D is the rod diameter, Cn and Ct are

the normal (form) drag and tangential (skin friction) drag coefficients, respectively, and ma is the added

mass coefficient. The rod�s buoyant weight per unit length is
F buoyant weight ¼ m� qf

pD2

4

� �
g; ð25Þ
where m is the rod�s mass per unit length and the vector g is the acceleration due to gravity. The forces (per
unit length) Fdrag, Fadded_mass and Fbuoyant_weight are included in linear momentum equation (6) through the

distributed force term F.

A.2. Hydrodynamics and thermal kinetics of DNA strands

The hydrodynamics of DNA is dominated by fluid viscosity (low Reynolds number) due to its small

dimensions and can be effectively modeled with the distributed drag forces and moments on slender rods

in Stokes flow as [13]:
F drag ¼ nna3 � ðmr � a3Þ þ ntðmr � a3Þa3f g; ð26Þ

Qdrag ¼ nbendinga3 � ðxr � a3Þ þ ntorsionalðxr � a3Þa3

 �

; ð27Þ
where nn and nt are translational drag coefficients in the normal and tangential directions, respectively,
nbending and ntorsional are rotational drag coefficients in the corresponding directions and xr is the fluid

angular velocity relative to the rod. The drag coefficients can be determined approximately [44,45] by

Oseen�s model for slow flow past a cylinder [46]. DNA is nearly neutrally buoyant in its aqueous sur-

rounding and the influence of the inertia terms in the Newton–Euler equations (6) and (7) is negligibly

small.

The strain energies in DNA are often of the order of KbT, where Kb is the Boltzmann constant and

T is the absolute temperature of the aqueous medium. Thus, DNA mechanics are affected by the ran-

dom bombardment of the surrounding fluid molecules. The thermal (or Langevin) forces exerted on
DNA through these bombardments may be modeled [13] as random (white noise) external forces whose

power spectrum is 4KbTnn, where nn is the (normal) drag coefficient (for proofs and more details refer

to Appendix 4.3 in [13]).
Appendix 2. Constraint equations

The compatibility constraint (9) follows from the continuity (in space and time) of the transformation L

from the inertial frame {ei} to the body fixed frame {ai}
feig ¼ faigL. ð28Þ
The ith column of L represents the directions cosines of ei with respect to the basis {ai}. Differentiating each

unit vector ei with respect to time (in the inertial frame) leads to
o

ot

� �
feig

ei ¼
oLi

ot
þ x� Li ¼ 0. ð29Þ
Upon re-writing x� Li ¼ ~xLi (~x is the skew-symmetric form of x defined in Appendix 4) for all columns of

L, (29) reduces to
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oL
ot

¼ �~xL. ð30Þ
Similarly, differentiation of (28) with respect to s leads to
oL
os

¼ �~jL. ð31Þ
Since the transformation L is continuous with respect to s and t [31], we require
o

os
oL
ot

� �
¼ o

ot
oL
os

� �
; ð32Þ
which leads to
o~x
os

L� ~x~jL ¼ o~j
ot

L� ~j~xL ð33Þ
upon repeated use of (30) and (31). Post-multiplying (33) by LT leads to
o~x
os

þ ~j~x� ~x~j

� �
LLT ¼ o~j

ot
LLT; ð34Þ
where we note LLT = I. Noting further that ~j~x� ~x~j is the skew-symmetric form of j · x leads to the com-

patibility constraint
ox
os

þ j� x ¼ oj
ot

. ð35Þ
The inextensibility constraint (8) follows from first computing the unit tangent vector a3. For an inexten-

sible and unshearable Kirchhoff rod, the normal to the cross-section coincides with the tangent to the cen-

terline, and is given by
o

os

� �
feig

R ¼ a3; ð36Þ
where R(s, t) is the position vector. Due to continuity of R(s, t) in s and t,
o

ot

� �
feig

o

os

� �
feig

R ¼ o

os

� �
feig

o

ot

� �
feig

R ¼ o

os

� �
feig

m ¼ ov
os

þ j� m. ð37Þ
Using (36) in (37) leads to
o

ot

� �
feig

o

os

� �
feig

R ¼ o

ot

� �
feig

a3 ¼
oa3
ot

þ x� a3 ¼ x� a3. ð38Þ
Finally, equating (37) and (38) leads to the inextensibility constraint
om
os

þ j� m ¼ x� a3. ð39Þ
Appendix 3. Coefficient matrices

The coefficient matrices used in (10) are provided here. Eq. (10) consolidates the field equations in the

following order: (8), (9), (7) and (6). The resulting coefficient matrix K is diagonal
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K ¼ �

I H H H

H I H H

H H B H

H H H I

2
6664

3
7775 and M ¼

H H H H

H H I H

H I H H

mI H H H

2
6664

3
7775. ð40Þ
Here, H is the null matrix and I is the identity matrix. The matrix F captures the nonlinear terms and any

distributed external forces/moments
F ¼

x� a3 � j� m

�j� x

� oB
os j� oðBj0Þ

os

� �
þ x� Ixþ f � a3 � j� Bðj� j0Þ � Q

mðx� mÞ � j� f � F

8>>>><
>>>>:

9>>>>=
>>>>;
. ð41Þ
Appendix 4. Skew-symmetric form of a vector

The cross product of two vectors x and y can be written as x� y ¼ ~xy, where
x ¼
x1
x2
x3

8><
>:

9>=
>;; y ¼

y1
y2
y3

8><
>:

9>=
>; and ~x ¼

0 �x3 x2
x3 0 �x1
�x2 x1 0

2
64

3
75. ð42Þ
If |x| is the magnitude of x and u is the unit vector along x, then the exponential of the skew-symmetric

matrix ~x can be expressed as
expð~xÞ ¼ Iþ ~u sinðjxjÞ þ ~u2ð1� cosðjxjÞÞ; ð43Þ

where I is the identity matrix. Note that this computation employs only a scalar power series and it there-

fore avoids the numerical difficulties of matrix exponentiation [47].
Appendix 5. Minute random disturbance

The bifurcations that govern stability in these examples are triggered numerically upon the addition of

minute random disturbances. We add these disturbances by introducing a minute random far-field flow mf
that generates drag on the rod as per Morison�s formulation (23) in Appendix 1. The normal (form) drag

and tangential (skin friction) drag coefficients are specified in Table 1. The random flow velocity mf is intro-
duced at each temporal and spatial step through a standard random number generator in the interval

[�0.5,+0.5] · 10�5 m/s.
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